The High-Rank Ensemble Transform Kalman Filter
نویسندگان
چکیده
منابع مشابه
The Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملEnsemble Kalman filter with the unscented transform
A modification scheme to the ensemble Kalman filter (EnKF) is introduced based on the concept of the unscented transform (Julier et al., 2000; Julier and Uhlmann, 2004), which therefore will be called the ensemble unscented Kalman filter (EnUKF) in this work. When the error distribution of the analysis is symmetric (not necessarily Gaussian), it can be shown that, compared to the ordinary EnKF,...
متن کاملAdaptive Observation Strategies with the Local Ensemble Transform Kalman Filter
Adaptive observation strategies (AOS) aim to improve forecasts by adding additional observations at a few locations that have no standard observations. Lorenz and Emanuel (1998) designed experiments to evaluate different adaptive strategies with Lorenz 40-variable model. Routine observations are observed over “land” (grid points from 21 to 40) every 6 hours. One adaptive point is chosen from on...
متن کاملWeighted Ensemble Transform Kalman Filter for Image Assimilation
This paper proposes an extension of the Weighted Ensemble Kalman filter (WEnKF) proposed by Papadakis et al. (2010) for the assimilation of image observations. The main contribution of this paper consists in a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF) incorporating directly as a measurement model a nonlinear image reconstruction criterion. This t...
متن کاملResampling the ensemble Kalman filter
Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is shown that this collapse is caused by positive coupling of the ensemble members due to use of one common estimate of the Kalman gain for the update of all ensemble members at each time step. This coupling can be avoided by resampling the Kalman gain from its sampling distribution i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2019
ISSN: 0027-0644,1520-0493
DOI: 10.1175/mwr-d-18-0210.1